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One-Dimensional Random Walk with 
Self-Interaction 
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A standard random walk on a one-dimensional integer lattice is considered 
where the probability of k self-intersections of a path co= (0, co(I),..., ~o(n)) is 
proportional to e -x~. It is proven that for 2 < 0 ,  n ~/3co(n) converges to a cer- 
tain continuous random variable. For 2 > 0  the formulas are given for the 
asymptotic Westerwater velocity of a generic path and for the variance of the 
fluctuations about the asymptotic motion. 

KEY WORDS:  Random walk; random path; Wiener process; Edwards 
model. 

1. I N T R O D U C T I O N  

The self-avoiding random walks in Z u play an important role in many 
physical problems: e.g., in percolation theory, (11 the theory of 
macromolecular solutions, (2'3) and constructive quantum field theory. (41 
Also considered besides self-avoiding random walks have been random 
walks with a limited probability of self-intersection (or with repelling 
interaction). (2"3) The important mathematical problem is to describe the 
asymptotic behavior of a generic random path in these systems. 

The following results (in a strong mathematical sense) have been 
obtained in this field: 

1. Brydges and Spencer (5) proved that for d~> 5 and weak interaction 
(12[ ~ 1), n-~/2oo(n) converges to the Gaussian random variable. 
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2. Westerwater (6'8) considered Edwards' model of polymer chains (3) 
and proved the existence of the measure 

const x exp [ - 2  f f  5(x(s)-x(t))dsdt]dw 

in the space of random paths of the standard three-dimensional Wiener 
process dw. Kusoka (1~ also investigated this measure. Westerwater (7) 
analyzed certain approximations of the polymer model, and proved the 
drift phenomenon for the approximate process [see formula (1) for d =  3 
below]. 

3. In one dimension for 2 > 0  Westerwater (9/ proved that the 
probability law of x(To )/T converges to a distribution focused in two paths 
t ~  +_rt, where r is the asymptotic velocity. Kusoka (11/ investigated the 
asymptotic behavior of the one-dimensional measure. The existence of a 
phase transition in one dimension was suggested by Thouless. (13/ 

In the low-dimension case ( d < 4 )  the following picture of phase 
transition is expected. The transition to a non-Gaussian behavior appears 
immediately after including the repulsive or contractive interaction (see 
Ref. 2). We show this phenomenon in the simplest case, d =  1. 

2. F O R M U L A T I O N  OF THE RESULTS 

Consider the space 

sg,= {co= (co(o),..., co(n)): co(o)= O, co(i+ 1)-co(i)= _+1} 

of paths in Z 1 starting at 0. On this space we introduce the following 
probability measure: 

#.({co}) = Z. - '  e x p [ -  2k(co)] 

where 

k(co) = # {i e {1 ..... n }: co(i) = co()) for some j < i} 

If 2 = 0 ,  then we have the standard random walk and Donsker's 
theorem asserts that n 1/2co([nt]) converges to the Wiener process as 
n ~ oe (here [ x ]  denotes the integer part of x). For 2 -r 0 we observe two 
different behaviors: if 2 > 0, then the generic path has a tendency to walk 
on one side of the origin (see Ref. 9); if 2 < 0, then the trajectory lies near 
the starting point. The results are expounded in the following theorems. 
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T h e o r e m  1. If 2 < 0, then the random variables n 1/3co(n) converge 
in a weak sense as n - ,  oo to the random variable with a density 

p(x) = 7c 1 - cos - -  + sin 
S 

for Ixl ~< s, and p(x) = 0 otherwise, where s = s(2) = (rc2/I;~1)1/3. 

The next theorem repeats in fact the result of Ref. 9. However, I know 
the formulation of the result of Ref. 9 only from a remark in Ref. 11, and 
am unaware of explicit formulas for asymptotic velocities and variances as 
a function of 2. For  these reasons I formulate the result for 2 > 0 and give 
the sketch of its proof  in Section 5. 

T h e o r e m  2. (a) If 2/>0, then the random functions 
t -*n ~co([nt]), t e  [0, 1], converge in a weak sense as n--* oo to the ran- 
dom process (, with the distribution P ( { ( , -  + r t } )= � 89  where r = r ( 2 ) =  
(e 2; - 1)/(e 2~ + 1 ). 

(b) Let 2 > 0 and/~,+ =/~n( �9 I co(n)> 0). Then the random functions 
t--, { ( 1 - r 2 ) n }  1/2[co([nt])-rnt] converge in a weak sense with respect 
to the conditional measure #n+ to the standard Wiener process. 

Remarks. 1. One can use another form of the Gibbs factor 

where 

fin(co) = Z ,  -1 exp{ - 2To(co) } 

re(co) = # {(i, j):  i<j ,  co(i) = co(j)} 

This kind of interaction has been used by other authors. This is the so- 
called Edwards model. I suppose that the energy k(co) is simpler in 
calculations. Moreover, the measure fin for fixed, negative 2 is not stable. 
One must choose 2 ~ n  -1 to guarantee stability. The measure /~ is 
automatically stable because the energy of interaction k(co) is less than n. 

2. Obviously, the multidimensional case is the most interesting. It is 
expected and physically justified that for 2 > 0 

co(n) ~//3/4 for d =  2 

co(r/) "-.//3/5 for d = 3 

co(n)~n 1/2 for d > 4  

(l) 

(see Refs. 2 and 7). Renormalization-group techniques should be useful to 
solve the problem. 
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3. Introducing spins ~ i=co ( i+  1)-co( i ) ,  one can treat the model 
under consideration as a model of one-dimensional statistical mechanics. 
The energy of interaction in the volume A = [0,..., n] ~ Z 1 is 

This model undergoes a phase transition at 2 = 0. The reason for this is 
that the radius of interaction is infinite (see also Ref. 13). 

3. P R E L I M I N A R Y  L E M M A S  

In this section we prove some combinatorial formulas upon which the 
proofs of Theorems 1 and 2 are based. 

k e m m a  1. k ( c o ) = n -  {supico(i)-infico(i)} - 1. 

ProoL Every point reached by a trajectory co is first reached only 
once. Therefore, the number of moments when the self-intersection does 
not occur is equal to the number of points visited by co, i.e., sup co( i ) -  
infco(i) + 1. This is equivalent to the assertion of Lemma 1. 

The next result is very well known. 

k e m m a  2. The number of n-paths co with supco( i )<a ,  infco(i)>b,  
and co(n)= c is equal to 

Hn(a,b,c)= ~ (C~ n+2k(~ b)+"}/2--C,!n+2k(~-b)+2a-cI/2) (2) 
k =  - - o o  

where C~=n!/{k! ( n - k ) ! }  is the binomial coefficient for O<~k4n, n, k 
integer, and C~ = 0 otherwise. 

ProoL See Ref. 12, IIl, w Problem 3. 

L e m m a  3. The number of paths co satisfying supco=a ,  infco=b,  
and co(n)= c is 

Gn(a, b, c)= -~aObHn(a, b -  1, c) (3) 

where ~ f ( x )  = f ( x  + 1) - f(x). 

ProoL This lemma is obvious. 
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4. P R O O F  O F  T H E O R E M  1 

Our basic tool is the Poisson summation formula, (~5) 

where 7 is the Fourier transform of the function f. We apply the formula 
(4) to the function f(z)=C~ n/2+zl with ~=a-b, x=c/2, or x=a-c/2 
and n odd. By straightforward calculations we have 

f(~)=(2 c~ ~) " sin(~/2)~/2 

Therefore 
Z C{n n+2k(a-b)+c}/2 
k 

= 2 cos ~--b- b) e ~id</("-b) (5) 
k -- k 

We return to the investigation of the measure /~. for 2 < 0. Assume 
that c >~ 0. Using Lemmas 1-3, one can easily see that 

/~.(o)(n) = c) = const x ~ G~(a,b,c) e;.( .... b) 
a>~c,b<~O 

= const x ~ {_O.~?bHn(a,b_l,c)}e;.(~ b) 
a>.c,b<~O 

= const x y'  e ;(a b)H~(a, b, c) 
a>c.b<O 

d--I 
= c o n s t x  e ;'d ~ g~(a,a-d,c) (6) 

d - - c + 2  a = c + l  

By (2) and (5) we have 
d - - I  

Z c) 
a = c + l  

(2)'72 ~ ( ~)"sin(~zk/d) 
= 2 cos - -  

k = l  k 

x{(d-c-e)cos(rt~--fc)+ sin{M~(c+2)/d}~~~ j 

(2) ' /2  ~ ( _~_)"1 { d - c - 2  ~zk(c+l) 
= k=, 2cos ~ ~ s i n  d 

d - c - 2  rck(c-1) r c k ( ~  2!} 
sin d ~- sin (7) 
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We denote  d =  [ t f f l U 3 ]  and c = [vrll/3]. As n --+ oo only the term with k = 1 
in the sum in the right side of (7) predominates.  This follows from the 
estimates 

,~a (cos  d ) .  co ( - ' )  . . , fsin{Tr(ld-1)(c+ ~ -i-d--( r)/d} 

sin{n(ld + 1 )(c + r)/d} 
+ ld+ 1 

( c o s  

/ = 1  

and 

cos rcs~'~sin{~s(c + r)/d} 
-d] ( s 

l sin{~(Id-s)(c -- ~ (--1)I' ~ +r)/d} 
/ = 1  

~s ~f ~ 2s 
~< COS-j ~2 + ~=l l2d~- s2} 

I 7~1 (1 +~)n d 
~ K  cos-= , s = 2 , 3  ..... 

a 

sin{Tt(ld + s)(c + r)/d} ]} 
+ ld+ s 

where r =  + l ,  2 and e > 0 ,  K > 0  do not  depend on n, c, d, or s. Therefore, 
from (6) and (7) we obtain 

#,(co(n) = [vnl/3]) 

f v  ~~ __ 1 2 2 n I/3 = const x 2"n 1/3 dr/[exp()~, ~zt/q )]  

x [rt(1 - v/q) cos(Tzv/t/) + sin(ztv/t/)] [1 + o(1)]  (8) 

as n--+ oe. The function exp(2t/-�89 takes its maximal  value at the 
point  tl=s(2)=(~rz/L2]) ~/3. Hence,  the integral in (8) is propor t ional  to 
rt(1 - v/s) cos(Try~s) + sin(ztv/s). F r o m  this and from (8), Theorem 1 follows. 

5. PROOF OF T H E O R E M  2 

First we concentra te  on the proof  of the formulas 

limoo(n)/n= +r, lim[co(n)-rn]/[(1-r2)n]l/2=N(O, 1) 
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By Lemma 1 one must consider the joint distribution of the endpoint 
and the extreme points of a random path (similarly as in Ref. 9). Let 
a=[nx], b=Eny], c=[nz], x> y~O~x>~z>~y, x - y - t z l / 2  <l/2. By 
(3), 

G,(a, b, c)= rt 2 Ox~y 

We shall find the asymptotic formula for Hn(a, b, c). The number of sum- 
mands in (2) is finite. Hence it is enough to find the asymptotic formula for 
the greatest one. The greatest nonvanishing term after differentiation is 
c{n + 2 ( a - b ) -  lcl }/2 

n 

Next we use the formula 

F(k+ 1 ) F ( n - k +  1) 
( c . * ) - '  = (n + 1) 

V(n + 2) 

= ( n +  1)B(k, n - k )  

= ( n + l )  z*(1 - r) ~ kd~ 

where B is the beta function314) To compute the integral (9) we use the 
Laplace method. Finally we get 

#,(inf co = b, sup co = a, co(n) = c) 

= exp[ -nT(x, y, z) + const x In n + O(1)] 

where 

7( x, Y ,Z)=(~+x--Y--~-) ln(~+x--  y--~-~ -) 

Straightforward calculations show that for 2 > 0 the function 7 (considered 
in the domain D={x<y<~O<~x>~z>>.y, x -y - l z] /2<l /2} ,  takes its 
minimal value at the points P+:  y=O,  x=z=r  and P _ :  y=z= -r, x = O  
in the b o u n d a r i e s S + = { y = O , x = z }  a n d S  = { x = O , y = z }  and 

(Y t s+ )" (P+)=  1/(1 - r  2) 

From this the asymptotic formulas for the end of a random path easily 
follow. 
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In o rde r  to p rove  the a sympto t i c  behav io r  of the whote r a n d o m  pa th  

one divides the in terval  [0, 1 ] by  the po in ts  0 = to < t l  < " "  < ts = 1 and 
computes  the jo in t  d i s t r ibu t ion  of  the var iables  

co( [nt i]  ), sup co(i), inf co(i) 
[ntj] ~ i ~ [ntj+ l] [ntj] ~ i ~ [ntj+ l] 

The further  analysis  is only  a slight compl i ca t i on  of  tha t  p resented  above  
for the endpo in t  of  the pa th  co. W e  thus comple te  the p r o o f  of Theorem 2. 
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